Based on the theory of local acceleration by chorus mode wave, *AE* index is selected as a good indicator for both source electron flux and flux anisotropy, and *Dst* index is selected as a good indicator for relativistic electron loss. By use of *AE* and *Dst* indices as input parameters, a prediction model for relativistic electrons at GEO orbit has been established on the basis of linear filter technology. The results are as follows. The total Prediction Efficiency (PE) of our model for the data from 2000 to 2009 is 0.818. The highest PE is about 0.856, which occurred in 2009. The lowest PE is about 0.663, which occurred in 2003. The prediction accuracy of the model is significantly better than that of the persistence model and is slightly less than the model developed by the same method but taking the solar wind as the input parameters. Furthermore, the model is improved by taking solar wind speed as an additional input parameter. The values of PE from 2000 to 2009 increase every year. The PE of 2005 is increased by 9.5%. The total prediction efficiency from 2000 to 2009 increased to 0.848. The linear correlation coefficient between forecasts and observations is 0.918, and the root mean square error is 0.422.